
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/335914018

Unsupervised Domain Adaptation of ConvNets for Medical Image

Segmentation via Adversarial Learning

Chapter · September 2019

DOI: 10.1007/978-3-030-13969-8_5

CITATIONS

0
READS

105

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Object Detection in Medical Image Analysis View project

Deep Leaning for Medical Image Analysis View project

Qi Dou

Imperial College London

74 PUBLICATIONS   2,066 CITATIONS   

SEE PROFILE

Cheng Chen

The Chinese University of Hong Kong

11 PUBLICATIONS   84 CITATIONS   

SEE PROFILE

Cheng Ouyang

Imperial College London

14 PUBLICATIONS   45 CITATIONS   

SEE PROFILE

Hao Chen

The Chinese University of Hong Kong

89 PUBLICATIONS   2,757 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Qi Dou on 09 October 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/335914018_Unsupervised_Domain_Adaptation_of_ConvNets_for_Medical_Image_Segmentation_via_Adversarial_Learning?enrichId=rgreq-7e13581e98bfb25e63c880a9b4cb21e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkxNDAxODtBUzo4MTE4ODUzNDM1Njc4NzJAMTU3MDU3OTk1ODk5OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/335914018_Unsupervised_Domain_Adaptation_of_ConvNets_for_Medical_Image_Segmentation_via_Adversarial_Learning?enrichId=rgreq-7e13581e98bfb25e63c880a9b4cb21e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkxNDAxODtBUzo4MTE4ODUzNDM1Njc4NzJAMTU3MDU3OTk1ODk5OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Object-Detection-in-Medical-Image-Analysis?enrichId=rgreq-7e13581e98bfb25e63c880a9b4cb21e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkxNDAxODtBUzo4MTE4ODUzNDM1Njc4NzJAMTU3MDU3OTk1ODk5OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Deep-Leaning-for-Medical-Image-Analysis?enrichId=rgreq-7e13581e98bfb25e63c880a9b4cb21e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkxNDAxODtBUzo4MTE4ODUzNDM1Njc4NzJAMTU3MDU3OTk1ODk5OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7e13581e98bfb25e63c880a9b4cb21e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkxNDAxODtBUzo4MTE4ODUzNDM1Njc4NzJAMTU3MDU3OTk1ODk5OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qi_Dou2?enrichId=rgreq-7e13581e98bfb25e63c880a9b4cb21e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkxNDAxODtBUzo4MTE4ODUzNDM1Njc4NzJAMTU3MDU3OTk1ODk5OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qi_Dou2?enrichId=rgreq-7e13581e98bfb25e63c880a9b4cb21e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkxNDAxODtBUzo4MTE4ODUzNDM1Njc4NzJAMTU3MDU3OTk1ODk5OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Imperial_College_London?enrichId=rgreq-7e13581e98bfb25e63c880a9b4cb21e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkxNDAxODtBUzo4MTE4ODUzNDM1Njc4NzJAMTU3MDU3OTk1ODk5OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qi_Dou2?enrichId=rgreq-7e13581e98bfb25e63c880a9b4cb21e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkxNDAxODtBUzo4MTE4ODUzNDM1Njc4NzJAMTU3MDU3OTk1ODk5OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cheng_Chen198?enrichId=rgreq-7e13581e98bfb25e63c880a9b4cb21e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkxNDAxODtBUzo4MTE4ODUzNDM1Njc4NzJAMTU3MDU3OTk1ODk5OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cheng_Chen198?enrichId=rgreq-7e13581e98bfb25e63c880a9b4cb21e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkxNDAxODtBUzo4MTE4ODUzNDM1Njc4NzJAMTU3MDU3OTk1ODk5OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_Chinese_University_of_Hong_Kong2?enrichId=rgreq-7e13581e98bfb25e63c880a9b4cb21e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkxNDAxODtBUzo4MTE4ODUzNDM1Njc4NzJAMTU3MDU3OTk1ODk5OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cheng_Chen198?enrichId=rgreq-7e13581e98bfb25e63c880a9b4cb21e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkxNDAxODtBUzo4MTE4ODUzNDM1Njc4NzJAMTU3MDU3OTk1ODk5OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cheng_Ouyang5?enrichId=rgreq-7e13581e98bfb25e63c880a9b4cb21e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkxNDAxODtBUzo4MTE4ODUzNDM1Njc4NzJAMTU3MDU3OTk1ODk5OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cheng_Ouyang5?enrichId=rgreq-7e13581e98bfb25e63c880a9b4cb21e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkxNDAxODtBUzo4MTE4ODUzNDM1Njc4NzJAMTU3MDU3OTk1ODk5OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Imperial_College_London?enrichId=rgreq-7e13581e98bfb25e63c880a9b4cb21e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkxNDAxODtBUzo4MTE4ODUzNDM1Njc4NzJAMTU3MDU3OTk1ODk5OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cheng_Ouyang5?enrichId=rgreq-7e13581e98bfb25e63c880a9b4cb21e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkxNDAxODtBUzo4MTE4ODUzNDM1Njc4NzJAMTU3MDU3OTk1ODk5OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hao_Chen74?enrichId=rgreq-7e13581e98bfb25e63c880a9b4cb21e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkxNDAxODtBUzo4MTE4ODUzNDM1Njc4NzJAMTU3MDU3OTk1ODk5OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hao_Chen74?enrichId=rgreq-7e13581e98bfb25e63c880a9b4cb21e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkxNDAxODtBUzo4MTE4ODUzNDM1Njc4NzJAMTU3MDU3OTk1ODk5OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_Chinese_University_of_Hong_Kong2?enrichId=rgreq-7e13581e98bfb25e63c880a9b4cb21e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkxNDAxODtBUzo4MTE4ODUzNDM1Njc4NzJAMTU3MDU3OTk1ODk5OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hao_Chen74?enrichId=rgreq-7e13581e98bfb25e63c880a9b4cb21e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkxNDAxODtBUzo4MTE4ODUzNDM1Njc4NzJAMTU3MDU3OTk1ODk5OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qi_Dou2?enrichId=rgreq-7e13581e98bfb25e63c880a9b4cb21e1-XXX&enrichSource=Y292ZXJQYWdlOzMzNTkxNDAxODtBUzo4MTE4ODUzNDM1Njc4NzJAMTU3MDU3OTk1ODk5OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


i
i

“Book” — 2018/12/14 — 14:25 — page 1 — #5 i
i

i
i

i
i

CHAPTER 1

Unsupervised Domain Adaptation
of ConvNets for Medical Image
Segmentation via Adversarial
Learning
Qi Dou,a,⇤, Cheng Chen⇤, Cheng Ouyang⇤⇤, Hao Chen⇤ and Pheng-Ann Heng⇤
⇤ The Chinese University of Hong Kong, Department of Computer Science and Engineering
⇤⇤ University of Michigan, Department of Electrical Engineering and Computer Science
a Corresponding: qdou@cse.cuhk.edu.hk

Contents

1. Introduction 2
2. Related works 4

2.1. Feature-level adaptation 4

2.2. Pixel-level adaptation 5

3. Feature-level adaptation with latent space alignment 5

3.1. Method 6

3.1.1. ConvNet segmenter architecture 6

3.1.2. Plug-and-Play domain adaptation module 7

3.1.3. Learning with adversarial loss 8

3.1.4. Training strategies 9

3.2. Experimental results 10

3.2.1. Dataset and evaluation metrics 10
3.2.2. Experimental settings 10

3.2.3. Results of UDA on cross-modality cardiac images 11

3.2.4. Ablation study on adaptation depth 13

4. Pixel-level adaptation with image-to-image translation 14

4.1. Method 14

4.1.1. ConvNet segmenter architecture 14

4.1.2. Image transformation with semantic-aware CycleGAN 15

4.1.3. Learning procedure and implementation details 17

4.2. Experimental results 17

4.2.1. Datasets and evaluation metrics 17
4.2.2. Experimental settings 18

4.2.3. Results of UDA on cross-cohort chest X-ray images 18

c� Elsevier Ltd.
All rights reserved. 1



i
i

“Book” — 2018/12/14 — 14:25 — page 2 — #6 i
i

i
i

i
i

2 Deep Learning and CNN for Medical Image Computing 2e

4.2.4. Effectiveness of semantic-aware loss with ablation study 20

5. Discussions 20
6. Conclusions 21

Abstract
Deep convolutional networks (ConvNets) have achieved the state-of-the-art performance
and become the de-facto standard for solving a wide variety of medical image analysis
tasks. However, the learned models tend to present degraded performance when being
applied to new target domain, which is different from the source domain where the model is
trained on. This chapter presents unsupervised domain adaptation methods using adversar-
ial learning, to generalize the ConvNets for medical image segmentation tasks. Specifically,
we present solutions from two different perspectives, i.e., feature-level adaptation and pixel-
level adaptation. The first is to use feature alignment in latent space, and has been applied to
cross-modality (MRI/CT) cardiac image segmentation. The second is to use image-to-image
transformation in appearance space, and has been applied to cross-cohort X-ray images for
lung segmentation. Experimental results have validate effectiveness of these unsupervised
domain adaptations with promising performance on the challenging task.

Key Words
• Unsupervised Domain Adaptation
• Medical Image Segmentation
• Convolutional Neural Network
• Adversarial Learning

1. Introduction
Deep convolutional networks (ConvNets) have made wide success in a variety of auto-
matic medical image analysis tasks, such as anatomical structure segmentation [1, 2],
lesion detection [3, 4] and cancer diagnosis [5, 6], attributing to the network’s learned
highly-representative features. In typical practice, the deep ConvNets are trained and
tested on datasets where all the images come from the same dataset, i.e., samples are
drawn from the same data distribution. However, it has been frequently observed that
domain shift can bring about performance degradation. The ConvNets tend to present
poor results when being applied to new target data, which are acquired using di↵erent
protocols, scanners or modalities [7, 8]. It is crucial to close the performance gap, for
large scale study or deployment of deep learning models in real-world clinical practice.

Domain adaptation has been a long-standing topic in machine learning. It is a very
common challenge to investigate the generalization capability of the learning systems.
In medical imaging, some traditional automatic methods also su↵er from similar poor
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1
(a) Chest X-ray images (b) Cardiac MRI/CT images

Figure 1.1 Illustration of performance degradation of deep learning models on medical images.
(a) ConvNet trained on source chest X-ray images can perform well on source data (left) but
get poor results on unseen target data (right). (b) ConvNet trained on cardiac MRI images (left)
receives a complete failure when tested on cardiac CT images (right).

generalization problem. For example, Philipsen et al. [9] have studied the influence of
data distribution variations across chest radiography datasets on segmentation methods
based on k-nearest neighbor classification and active shape modeling. In recent years,
the study of adapting ConvNets have gradually attracted more attention. In the concept
of domain adaptation, the domain of labelled training data is termed as source domain,
and the unseen test data is termed as target domain. One straightforward solution is
transfer learning, i.e., fine-tuning the ConvNets learned on source domain with extra
labeled data from the target domain. Remarkably, Ghafoorian et al. [7] investigated on
the number of fine-tuned layers to reduce the required amount of annotations for brain
lesion segmentation across MRI datasets. However, the way of supervised transfer
learning (STL) still relies on extra labelled data, which is quite expensive or sometimes
even infeasible to obtain in medical field.

Instead, the unsupervised domain adaptation (UDA) methods are more appealing
and feasible, since these scenarios transfer knowledge across domains without using
additional target domain labels. Generally speaking, existing literatures tackle the
unsupervised domain adaptation task based on adversarial learning [25] from two di-
rections: 1) feature-level adaptation with latent space alignment; 2) pixel-level adap-
tation with image-to-image translation. More specifically, for feature-level adaptation,
the source and target inputs are mapped into a shared latent feature space, such that a
classifier learned based on this common-space can work for both domains. For pixel-
level adaptation, the images from target domain are transformed into the appearance
of source domain, such that ConvNets trained on source domain can be used for tar-
get images, or vice versa. Detailed literatures within these two solution directions are
described in the next section.

In this chapter, we focus on demonstrating how to conduct unsupervised domain
adaptation of ConvNets on medical image segmentation tasks, with two case studies as
illustrated in Figure. 1.1. One is using feature space alignment for adapting ConvNets
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between di↵erent modalities of images (i.e., CT and MRI) for cardiac segmentation.
The other is employing pixel space transformation for adapting ConvNets between
di↵erent cohorts of chest X-ray images for lung segmentation. Our early works related
to this chapter have been published in [10] and [11].

2. Related works
Domain adaptation aims to recover the performance degradation caused by any dis-
tribution change occurred after learning a classifier. For deep learning models, this
situation also applies, and it has been an active and fruitful research topic in recent
investigations of deep neural networks. In this section, we review the literatures of
unsupervised domain adaptation methods proposed from two di↵erent perspectives,
i.e., feature-level adaptation and pixel-level adaptation.

2.1. Feature-level adaptation
One group of prior studies on unsupervised domain adaptation focused on aligning
the distributions between domains in the feature space, by minimizing measures of
distance between features extracted from the source and target domains. Pioneer works
tried to minimize the distance between domain statistics. For example, the Maximum
Mean Discrepancy (MMD) was minimized together with a task-specific loss to learn
the domain-invariant and semantic-meaningful features in [12, 13]. The correlations
of layer activations between the domains were aligned in the study of [14]. Later on,
[15] pioneered adversarial feature adaptation where a domain discriminator aims to
classify the source and target representations while a feature generator competes with
the discriminator to produce domain-invariant features. The [16] introduced a more
flexible adversarial learning method with untied weight sharing, which helps e↵ective
learning in the presence of larger domain shifts. Recent studies [17, 18] proposed to
apply the adversarial learning in other lower-dimensional spaces instead of the high-
dimensional feature space for more e↵ective feature alignment.

E↵ectiveness of the adversarial framework for feature adaptation has also been
validated in medical applications. Kamnitsas et al. [19] made the earliest attempt to
align feature distributions in cross-protocol MRI images with adversarial loss. The
adversarial framework was further extended to cross-modality cardiac segmentation
in [10] and [20]. Most recently, the adversarial loss was combined with a shape prior
to improve domain adaptation performance for left atrium segmentation across ul-
trasound datasets [21]. In [22], the adaptation for whole-slide images was achieved
through the adversarial training between domains along with a Siamese architecture
on the target domain to add a regularization. Dong et al. [23] discriminated segmenta-
tion predictions of the heart on both source and target X-rays from those ground truth
masks, based on the assumption that segmentation masks should be domain indepen-
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dent. Zhang et al. [24] proposed multi-view adversarial training for dataset-invariant
left and right-ventricular coverage estimation in cardiac MRI.

2.2. Pixel-level adaptation
With the success of generative adversarial networks (GANs) [25] and its powerful ex-
tensions such as CycleGAN [26] for producing realistic images, there exit lines of re-
searches performing adaptation in pixel-level through image-to-image transformation.
Some methods first trained a ConvNet in source domain, and then transformed the tar-
get images into source-like ones, such that the transformed image can be tested using
the pre-trained source model [11, 27, 28]. Inversely, other methods tried to transform
the source images into the appearance of target images [29, 30, 31]. The transformed
target-like images were then used to train a task model which could perform well in the
target domain. For pixel-level adaptation, it is important that the structural contents of
original images are well-preserved in the generated images. For examples, Shrivastava
et al. [29] used a L1 reconstruction loss to ensure the contents similarity between the
generated target images and original images. Bousmalis et al. [30] proposed a content
similarity loss to force the generated image preserve original contents.

In the field of medical image analysis using deep learning, pixel-level domain adap-
tation has been more and more frequently explored to generalize learned models across
domains. Zhao et al. [32] combined the annotated vessel structures with target image
style to generate target-like retinal fundus data, then used the synthetic dataset to train
a target domain model. Some CycleGAN-based methods have been proposed to tackle
the cross-cohort or cross-modality domain shift. For the X-ray segmentation, both [11]
and [28] translated target X-ray images to resemble the source images, and directly
applied the established source model to segment the generated source-like images. In
[33], a two-stage approach was proposed to first translate CT images to appear like
MRI using CycleGAN, and then used both generated MRI and a few real MRI for
semi-supervised tumor segmentation. In [34], an end-to-end synthetic segmentation
network was applied for MRI and CT images adaptation, which combined CycleGAN
with a segmentation network.

3. Feature-level adaptation with latent space alignment
In this section, we present a feature-level unsupervised domain adaptation framework
with adversarial learning, applied to cross-modality cardiac image segmentations. To
transfer the established ConvNet from source domain (MRI) to target domain (CT),
we design a plug-and-play domain adaptation module (DAM) which implicitly maps
the target input data to the feature space of source domain. Furthermore, we construct
a discriminator which is also a ConvNet termed as domain critic module (DCM) to
di↵erentiate the feature distributions of two domains. Adversarial loss is derived to
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Figure 1.2 Our proposed feature-level adaptation framework for cross-modality domain adap-
tation. The DAM and DCM are optimized via adversarial learning. During inference, the domain
router is used for routing feature maps of different domains.

train the entire domain adaptation framework in an unsupervised manner, by placing
the DAM and DCM into a minimax two-player game. Figure 1.2 presents overview of
our method. The details of network architecture, adaptation method, adversarial loss,
training strategies and experimental results are elaborated in the followings.

3.1. Method
3.1.1. ConvNet segmenter architecture
Given a set of N

s labeled samples {xs

i
, ys

i
}Ns

i=1 from the source domain X
s, we conduct

supervised learning to establish a mapping from the input image to the label space Y
s.

In our setting, the x
s

i
represents the sample (pixel or patch) of medical images and y

s

i

is the category of anatomical structures. For the ease of denotation, we omit the index
i in the following, and directly use x

s and y
s to represent the samples and labels from

the source domain.
A segmentation ConvNet is established to implicitly learn the mapping M

s from
input to the label space. The backbone of our segmenter is residual network for pixel-
wise prediction of biomedical images. We employ the dilated residual blocks [35] to
extract representative features from a large receptive field while preserving the spatial
acuity of feature maps. This is for the considerations of our network design for feature
space alignment, because short-cut connections are not expected in our model. More
specifically, the image is firstly input to a Conv layer, then forwarded to 3 residual
modules (termed as RM, each consisting of 2 stacked residual blocks) and downsam-
pled by a factor of 8. Next, another three RMs and one dilated RM are stacked to form
a deep network. To enlarge receptive field for extracting global semantic features, 4
dilated convolutional layers are used in RM7 with a dilation factor of 2. For dense
predictions in our segmentation task, we conduct upsamling at layer Conv10, which
is followed by 5⇥5 convolutions to smooth out the feature maps. Finally, a softmax
layer is used for probability predictions of the pixels.
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The segmentation ConvNet is optimized with labeled data from the source domain
by minimizing the hybrid lossLseg composed of the multi-class cross-entropy loss and
the Dice coe�cient loss [36]. Formally, we denote y

s

i,c for binary label regarding class
c2C in sample x

s

i
, its probability prediction is p̂

s

i,c, and the label prediction is ŷ
s

i,c, the
source domain segmenter loss function is as follows:

Lseg = �
N

sX

i=1

X

c2C
w

s

c
· ys

i,c log(p̂
s

i,c) � �
X

c2C

P
N

s

i=1 2y
s

i,cŷ
s

i,c
P

Ns

i=1 y
s

i,cy
s

i,c +
P

Ns

i=1 ŷ
s

i,cŷ
s

i,c

, (1.1)

where the first term is the cross-entropy loss for pixel-wise classification, with w
s

c
being

a weighting factor to cope with the issue of class imbalance. The second term is the
Dice loss for multiple cardiac structures, which is commonly employed in biomedical
image segmentation problems. We combine the two complementary loss functions to
tackle the challenging cardiac segmentation task. In practice, we also tried to use only
one type of loss, but the performance was not quite high.

3.1.2. Plug-and-Play domain adaptation module
After obtaining the ConvNet learned on the source domain, our goal is to generalize it
to a target domain. In transfer learning, the last several layers of the network are usu-
ally fine-tuned for a new task with new label space. The supporting assumption is that
early layers in the network extract low-level features (such as edge filters and color
blobs) which are common for vision tasks. Those upper layers are more task-specific
and learn high-level features for the classifier [37, 38]. In this case, labeled data from
target domain are required to supervise the learning process. Di↵erently, we use unla-
beled data from the target domain, given that labeling dataset is time-consuming and
expensive. This is critical in clinical practice where radiologists are willing to perform
image computing on cross-modality data with as less extra annotation cost as possible.
Hence, we propose to adapt the ConvNet with unsupervised learning.

In our segmenter, the source domain mapping M
s is layer-wise feature extractors

composing stacked transformations of {Ms

l1
, ...,Ms

ln
}, with the l denoting the network

layer index. Formally, the predictions of labels are obtained by:

ŷ
s = M

s(x
s) = M

s

l1:ln(x
s) = M

s

ln
� ... � M

s

l1
(x

s). (1.2)

For domain adaptation, the source and target domains share the same label space,
i.e., we segment the same anatomical structures from medical MRI/CT data. Our
hypothesis is that the distribution changes between the cross-modality domains are
primarily low-level characteristics (e.g., gray-scale values) rather than high-level (e.g.,
geometric structures). The higher layers (such as M

s

ln
) are closely in correlation with

the class labels which can be shared across di↵erent domains. In this regard, we pro-
pose to reuse the feature extractors learned in higher layers of the ConvNet, whereas
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the earlier layers are updated to conduct distribution mappings in feature space for our
unsupervised domain adaptation.

To perform segmentation on target images x
t, we propose a domain adaptation

moduleM that maps x
t to the feature space of the source domain. We denote the adap-

tation depth by d, i.e., the layers earlier than and including ld are replaced by DAM
when processing the target domain images. In the meanwhile, the source model’s
upper layers are frozen during domain adaptation learning and reused for target infer-
ence. Formally, the predictions for target domain is as:

ŷ
t = M

s

ld+1:ln �M(x
t) = M

s

ln
� ... � M

s

ld+1
�M(x

t), (1.3)

where M(x
t) =Ml1:ld (x

t) =Mld
� ... �Ml1 (x

t) represents the DAM which is also a
stacked ConvNet. Overall, we form a flexible plug-and-play domain adaptation frame-
work. During the test inference, the DAM directly replaces the early d layers of the
model trained on source domain. The images of target domain are processed and
mapped to deep learning feature space of source domain via the DAM. These adapted
features are robust to the cross-modality domain shift, and can be mapped to the label
space using those high-level layers established on source domain. In practice, the Con-
vNet configuration of the DAM is identical to {Ms

l1
, ...,Ms

ld
}. We initialize the DAM

with trained source domain model and fine-tune the parameters in an unsupervised
manner with adversarial loss.

3.1.3. Learning with adversarial loss
We propose to employ adversarial loss to train our domain adaptation framework in
an unsupervised manner. The spirit of adversarial training roots in GAN, where a
generator model and a discriminator model form a minimax two-player game. The
generator learns to capture the real data distribution; and the discriminator estimates
the probability that a sample comes from the real training data rather than the generated
data. These two models are alternatively optimized and compete with each other, until
the generator can produce real-like samples that the discriminator fails to di↵erentiate.
For our problem, we train the DAM, aiming that the ConvNet can generate source-like
feature maps from target input. Hence, the ConvNet is equivalent to a generator from
GAN’s perspective.

Considering that accurate segmentations come from high-level semantic features,
which in turn rely on fine-patterns extracted by early layers, we propose to align mul-
tiple levels of feature maps between source and target domains (see Figure 1.2). In
practice, we select several layers from the frozen higher layers, and refer their corre-
sponding feature maps as the set of FH(·) where H= {k, ..., q} being the set of selected
layer indices. Similarly, we denote the selected feature maps of DAM byMA(·) with
the A being the selected layer set. In this way, the feature space of target domain
is (MA(x

t), FH(x
t)) and the (M

s

A
(x

s), FH(x
s)) is their counterpart for source domain.
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Given the distribution of (MA(x
t), FH(x

t))⇠Pg, and that of (M
s

A
(x

s), FH(x
s))⇠Ps, the

distance between these two domain distributions which needs to be minimized is rep-
resented as W(Ps,Pg). For stabilized training, we employ the Wassertein distance [39]
between the two distributions as follows:

W(Ps,Pg) = inf
�⇠Q(Ps,Pg)

E(x,y)⇠�[kx � yk], (1.4)

where
Q

(Ps,Pg) represents the set of all joint distributions �(x, y) whose marginals are
respectively Ps and Pg.

In adversarial learning, the DAM is pitted against an adversary: a discriminative
model that implicitly estimates the W(Ps,Pg). We refer our discriminator as domain
critic module and denote it by D. Specifically, our constructed DCM consists of sev-
eral stacked residual blocks, as illustrated in Figure 1.2. In each block, the number of
feature maps is doubled until it reaches 512, while their sizes are decreased. We con-
catenate the multiple levels of feature maps as input to the DCM. This discriminator
would di↵erentiate the complicated feature space between the source and target do-
mains. In this way, our domain adaptation approach not only removes source-specific
patterns in the beginning but also disallows their recovery at higher layers [19]. In
unsupervised learning, we jointly optimize the generatorM (DAM) and the discrimi-
natorD (DCM) via adversarial loss. Specifically, with X

t being target set, the loss for
learning the DAM is:

min
M
LM(Xt,D)=�E(MA(xt),FH(xt))⇠Pg

[D(MA(x
t), FH(x

t))]. (1.5)

Then, with the X
s representing the set of source images, the DCM is optimized via:

min
D
LD(Xs, Xt,M) =

E(MA(xt),FH(xt))⇠Pg
[D(MA(x

t), FH(x
t))] �

E(M
s

A
(xs),FH(xs))⇠Ps

[D(M
s

A
(x

s), FH(x
s))], s.t. kDkLK ,

(1.6)

where K is a constant that applies Lipschitz contraint toD.
During the alternative updating ofM andD, the DCM outputs a more precise esti-

mation of W(Ps,Pg) between distributions of the feature space from both domains. The
updated DAM is more e↵ective to generate source-like feature maps for conducting
cross-modality domain adaptation.

3.1.4. Training strategies
In our setting, the source domain is biomedical cardiac MRI images and the target
domain is CT data. All the volumetric MRI and CT images were re-sampled to the
voxel spacing of 1⇥1⇥1 mm3 and cropped into the size of 256⇥256⇥256 centering
at the heart region. In preprocessing, we conducted intensity standardization for each
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domain, respectively. Augmentations of rotation, zooming and a�ne transformations
were employed to combat over-fitting. To leverage the spatial information existing
in volumetric data, we sampled consecutive three slices along the coronal plane and
input them to three channels. The label of the intermediate slice is utilized as the
ground truth when training the 2D networks.

We first trained the segmenter on the source domain data in supervised manner
with stochastic gradient descent. The Adam optimizer was employed with parameters
as batch size of 5, learning rate of 1⇥10�3 and a stepped decay rate of 0.95 every
1500 iterations. After that, we alternatively optimized the DAM and DCM with the
adversarial loss for unsupervised domain adaptation. Following the heuristic rules of
training WGAN [39], we updated the DAM every 20 times when updating the DCM.
In adversarial learning, we utilized the RMSProp optimizer with a learning rate of
3 ⇥ 10�4 and a stepped decay rate of 0.98 every 100 joint updates, with weight clipping
for the discriminator being 0.03.

3.2. Experimental results
3.2.1. Dataset and evaluation metrics
We validated our proposed unsupervised domain adaptation method on the public
dataset of MICCAI 2017 Multi-Modality Whole Heart Segmentation for cross-modality
cardiac segmentation in MRI and CT images [40]. This dataset consists of unpaired
20 MRI and 20 CT images from 40 patients. The MRI and CT data were acquired
in di↵erent clinical centers. The cardiac structures of the images were manually an-
notated by radiologists for both MRI and CT images. Our ConvNet segmenter aimed
to automatically segment four cardiac structures including the ascending aorta (AA),
the left atrium blood cavity (LA-blood), the left ventricle blood cavity (LV-blood), and
the myocardium of the left ventricle (LV-myo). For each modality, we randomly split
the dataset into training (16 subjects) and testing (4 subjects) sets, which were fixed
throughout all experiments.

For evaluation, we employed two commonly-used metrics to quantitatively evalu-
ate the segmentation performance of automatic methods [41]. The DICE coe�cient
([%])was employed to assess the agreement between the predicted segmentation and
ground truth for cardiac structures. We also calculated the average surface distance
(ASD[voxel]) to measure the segmentation performance from the perspective of the
boundary. A higher Dice and lower ASD indicate better segmentation performance.
Both metrics are presented in the format of mean±std, which shows the average per-
formance as well as the cross-subject variations of the results.

3.2.2. Experimental settings
We employed the MRI images as the source domain and the CT dataset as the tar-
get domain. We demonstrated the e↵ectiveness of the proposed unsupervised cross-
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Table 1.1 Quantitative comparison of segmentation performance on cardiac structures between
different methods. (Note: the - means that the results were not reported by that method.)

Methods AA LA-blood LV-blood LV-myo
Dice ASD Dice ASD Dice ASD Dice ASD

DL-MR [42] 76.6±13.8 - 81.1±13.8 - 87.7±7.7 - 75.2±12.1 -
DL-CT [42] 91.1±18.4 - 92.4±3.6 - 92.4±3.3 - 87.2±3.9 -
Seg-MRI 75.9±5.5 12.9±8.4 78.8±6.8 16.0±8.1 90.3±1.3 2.0±0.2 75.5±3.6 2.6±1.4
Seg-CT 81.3±24.4 2.1±1.1 89.1±3.0 10.6±6.9 88.8±3.7 21.3±8.8 73.3±5.9 42.8±16.4
Seg-CT-STL 78.3±2.8 2.9±2.0 89.7±3.6 7.6±6.7 91.6±2.2 4.9±3.2 85.2±3.3 5.9±3.8
Seg-CT-noDA 19.7±2.0 31.2±17.5 25.7±17.2 8.7±3.3 0.8±1.3 N/A 11.1±14.4 31.0±37.6
Seg-CT-UDA (d=13) 63.9±15.4 13.9±5.6 54.7±13.2 16.6±6.8 35.1±26.1 18.4±5.1 35.4±18.4 14.2±5.3
Seg-CT-UDA (d=21) 74.8±6.2 27.5±7.6 51.1±11.2 20.1±4.5 57.2±12.4 29.5±11.7 47.8±5.8 31.2±10.1
Seg-CT-UDA (d=31) 71.9±0.5 25.8±12.5 55.2±22.9 15.2±8.2 39.2±21.8 21.2±3.9 34.3±19.1 24.7±10.5

modality domain adaptation method with extensive experiments. We designed sev-
eral experiment settings: 1) training and testing the ConvNet segmenter on source
domain (referred as Seg-MRI); 2) training the segmenter from scratch on annotated
target domain data (referred as Seg-CT); 3) fine-tuning the source domain segmenter
with annotated target domain data, i.e., the supervised transfer learning (referred as
Seg-CT-STL); 4) directly testing the source domain segmenter on target domain data
(referred as Seg-CT-noDA); 5) our proposed unsupervised domain adaptation method
(referred as Seg-CT-UDA). We also compared with a previous state-of-the-art heart
segmentation method using ConvNets [42]. Last but not least, we conducted ablation
studies to observe how the adaptation depth would a↵ect the performance.

3.2.3. Results of UDA on cross-modality cardiac images
Table 1.1 reports the comparison results of di↵erent methods, where we can see that
the proposed unsupervised domain adaptation method is e↵ective by mapping the fea-
ture space of the target CT domain to that of the source MRI domain. Qualitative
results of the segmentations for CT images are presented in Figure 1.3.

In the experiment setting Seg-MRI, we first evaluate the performance of the source
domain model, which serves as the basis for subsequent domain adaptation proce-
dures. Compared with [42], our ConvNet segmenter reached promising performance
with exceeding Dice on LV-blood and LV-myo, as well as comparable Dice on AA and
LA-blood. With this standard segmenter network architecture, we conducted follow-
ing experiments to validate the e↵ectiveness of our unsupervised domain adaptation
framework.

To experimentally explore the potential upper-bounds of the segmentation accu-
racy of the cardiac structures from CT data, we implemented two di↵erent settings,
i.e., the Seg-CT and Seg-CT-STL. Generally, the segmenter fine-tuned from Seg-MRI

achieved higher Dice and lower ASD than the model trained from scratch, proving
the e↵ectiveness of supervised transfer learning for adapting an established network
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(a) CT Image (b) CT Label (c) Seg-CT-STL (d) Seg-CT (e) Seg-CT-noDA (f) Seg-CT-UDA

Figure 1.3 Results of different methods for CT image segmentations. Each row presents one
typical example, from left to right: (a) raw CT slices (b) ground truth labels (c) supervised transfer
learning (d) ConvNets trained from scratch (e) directly applying MRI segmenter on CT data (f)
our unsupervised cross-modality domain adaptation results. The structures of AA, LA-blood, LV-
blood and LV-myo are indicated by yellow, red, green and blue colors, respectively (best viewed
in color).

to a related target domain using additional annotations. Meanwhile, these results are
comparable to [42] on most of the four cardiac structures.

To demonstrate the severe domain shift inherent in cross-modality biomedical im-
ages, we directly applied the segmenter trained on MRI domain to the CT data without
any domain adaptation procedure. Unsurprisingly, the network of Seg-MRI completely
failed on CT images, with average Dice of merely 14.3% across the structures. As
shown in Table 1.1, the Seg-CT-noDA only got a Dice of 0.8% for the LV-blood. The
model did not even output any correct predictions for two of the four testing subjects
on the structure of LV-blood (please refer to (e) in Figure 1.3). This demonstrates that
although the cardiac MRI and CT images share similar high-level representations and
identical label space, the significant di↵erence in their low-level characteristics makes
it extremely di�cult for MRI segmenter to extract e↵ective features for CT.

With our proposed unsupervised domain adaptation method, a great improvement
of the segmentation performance on the target CT data was achieved compared with
the Seg-CT-noDA. More specifically, our Seg-CT-UDA (d=21) model has increased the
average Dice across four cardiac structures by 43.4%. As presented in Figure 1.3, the
predicted segmentation masks from Seg-CT-UDA can successfully localize the cardiac
structures and further capture their anatomical shapes. The performance on segment-
ing AA is even close to that of Seg-CT-STL. This reflects that the distinct geometric
pattern and the clear boundary of the AA have been successfully captured by the DCM.
In turn, it supervises the DAM to generate similar activation patterns as the source fea-
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(a) Label (b) d=13 (c) d=21 (d) d=31

Figure 1.4 Comparison of results using Seg-CT-UDA with different adaptation depth (colors are
the same with Figure 1.3).

ture space via adversarial learning. Looking at the other three cardiac structures (i.e.,
LA-blood, LV-blood and LV-myo), the Seg-CT-UDA performances are not as high as
that of AA. The reason is that these anatomical structures are more challenging, given
that they come with either relatively irregular geometrics or limited intensity contrast
with surrounding tissues. The deficiency focused on the unclear boundaries between
neighboring structures or noise predictions on relatively homogeneous tissues away
from the ROI. This is responsible for the high ASDs of Seg-CT-UDA, where bound-
aries are corrupted by noisy outputs. Nevertheless, by mapping the feature space of
target domain to that of the source domain, we obtained greatly improved and promis-
ing segmentations against Seg-CT-noDA with zero data annotation e↵ort.

3.2.4. Ablation study on adaptation depth
We conduct ablation experiments to study the adaptation depth d, which is an impor-
tant hyper-parameter in our framework to determine how many layers to be replaced
during the plug-and-play domain adaptation procedure. Intuitively, a shallower DAM
(i.e., smaller d) might be less capable of learning e↵ective feature mapping function
M across domains than a deeper DAM (i.e., larger d). This is due to the insu�cient
capacity of parameters in shallow DAM, as well as the huge domain shift in feature
distributions. Conversely, with an increase in adaptation depth d, DAM becomes more
powerful for feature mappings, but training a deeper DAM solely with adversarial
gradients would be more challenging.

To experimentally demonstrate how the performance would be a↵ected by d and
search for an optimal d, we repeated the experiments with domain adaptation from
MRI to CT by varying the d = {13, 21, 31}, while maintaining all the other settings the
same. Viewing the examples in Figure 1.4, Seg-CT-UDA (d=21) model obtained an ap-
proaching ground-truth segmentation mask for ascending aorta. The other two models
also produced inspiring results capturing the geometry and boundary characteristics of
AA, validating the e↵ectiveness of our unsupervised domain adaptation method. From
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Table 1.1, we can observe that DAM with a middle-level of adaptation depth (d=21)
achieved the highest Dice on three of the four cardiac structures, exceeding the other
two models by a significant margin. For the LA-blood, the three adaptation depths
reached comparable segmentation Dice and ASD, and the d=31 model was the best.
Notably, the model of Seg-CT-UDA (d=31) overall demonstrated superiority over the
model with adaptation depth d=13. This shows that enabling more layers learnable
helps to improve the domain adaptation performance on cross-modality segmenta-
tions.

4. Pixel-level adaptation with image-to-image translation
In this section, we present a pixel-level unsupervised domain adaptation framework
with generative adversarial network, applied to cross-cohort X-ray lung segmentation.
Di↵erent from feature-level adaptation method described in the last section, this pixel-
level adaptation method detaches the segmentation ConvNets from the domain adap-
tation process. Given a test image, our framework conducts image-to-image transfor-
mation to generate a source-like image which is directly forwarded to the established
source ConvNet. To enhance the preservation of structural information during image
transformation, we improve CycleGAN with a novel semantic-aware loss by embed-
ding a nested adversarial learning in semantic label space. Our method is named as
SeUDA, standing for semantic-aware unsupervised domain adaptation, and Figure 1.5
presents overview of it. Details of network configurations, adversarial losses and ex-
perimental results will be presented in the followings.

4.1. Method
With a set of the source domain images x

s2Xs and corresponding labels y
s2Y, we

train a ConvNet, denoted by f
s, to segment the input images. For a new set of the

target domain images x
t 2Xt, we aim to adapt the appearance of x

t to source image
space Xs, so that the established f

s can be directly generalized to the transformed
image.

4.1.1. ConvNet segmenter architecture
To establish a state-of-the-art segmentation network, we make complementary use of
the residual connection, dilated convolution and multi-scale feature fusion. The back-
bone of our segmenter is modified ResNet-101. We replace the standard convolutional
layers in the high-level residual blocks with the dilated convolutions. To leverage fea-
tures with multi-scale receptive fields, we replace the last fully-connected layer with
four parallel 3⇥3 dilated convolutional branches, with a dilation rate of {6, 12, 18, 24},
respectively. An upsampling layer is added in the end to produce dense predictions for
the segmentation task. We start with 32 feature maps in the first layer and double the
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Figure 1.5 The overview of our unsupervised domain adaptation framework. Left: the seg-
mentation DNN learned on source domain; Middle: the SeUDA where the paired generator
and discriminator are indicated with the same color, the blue/green arrows illustrate the data
flows from original images (x

t/xs) to transformed images (x
t!s/xs!t) then back to reconstructed

images (x̂
t/x̂s) in cycle-consistency loss, the orange part is the discriminator for the semantic-

aware adversarial learning; Right: the inference process of SeUDA given a new target image
for testing.

number of feature maps when the spatial size is halved or the dilation convolutions
are utilized. The segmenter is optimized by minimizing the pixel-wise multi-class
cross-entropy loss of the prediction f

s(x
s) and ground truth y

s with standard stochas-
tic gradient descent.

4.1.2. Image transformation with semantic-aware CycleGAN
With the source domain model f

s which maps the source input space Xs to the se-
mantic label spaceY, our goal is to make it generally applicable to new target images.
Given that annotating medical data is quite expensive, we conduct the domain adap-
tation in an unsupervised manner. Specifically, we map the target images towards the
source image space. The generated new image x

t!s appears to be drawn fromXs while
the content and semantic structures remain unchanged. In this way, we can directly ap-
ply the well-established model f

s on x
t!s without re-training and get the segmentation

result for x
t.

To achieve this, we use generative adversarial networks [25], which have made a
wide success for pixel-to-pixel image translation, by constructing a generator Gt!s

and a discriminator Ds. The generator aims to produce realistic transformed image
x

t!s = Gt!s(x
t). The discriminator competes with the generator by trying to distin-

guish between the fake generated data x
t!s and the real source data x

s. The GAN
corresponds to a minimax two-player game and is optimized via the following objec-
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tive:

LGAN(Gt!s,Ds) = Exs[logDs(x
s)] + Ext [log(1 �Ds(Gt!s(x

t)))], (1.7)

where the discriminator tries to maximize this objective to correctly classify the x
t!s

and x
s, while the generator tries to minimize log(1 �Ds(Gt!s(x

t))) to learn the data
distribution mapping from Xt to Xs.

Cycle-consistency adversarial learning. To achieve domain adaptation with im-
age transformation, it is crucial that the detailed contents in the original x

t are well-
preserved in the generated x

t!s. Inspired by the CycleGAN [26], we employ the cycle-
consistency loss during the adversarial learning to maintain the contents with clinical
clues of the target images.

We build a reverse source-to-target generator Gs!t and a target discriminator Dt,
to bring the transformed image back to the original image. This pair of models are
trained with a same-way GAN loss LGAN(Gs!t,Dt) following the Eq. (1.7). In this
regard, we derive the cycle-consistency loss which encourages Gs!t(Gt!s(x

t))⇡ x
t and

Gt!s(Gs!t(x
s))⇡ x

s in the transformation:

Lcyc(Gt!s,Gs!t) = Ext [||Gs!t(Gt!s(x
t)) � x

t||1]+Exs[||Gt!s(Gs!t(x
s)) � x

s||1], (1.8)

where the L1-Norm is employed for reducing blurs in the generated images. This loss
imposes the pixel-level penalty on the distance between the cyclic transformation re-
sult and the input image.

Semantic-aware adversarial learning. The image quality of x
t!s and the stability

of Gt!s are crucial for the e↵ectiveness of our method, since we apply the established
f

s to x
t!s which is obtained by inputting x

t to Gt!s. Therefore, besides the cycle-
consistency loss which composes both generators and constraints the cyclic input-
output consistency, we further try to explicitly enhance the intermediate transforma-
tion result x

t!s. Specifically, for our segmentation domain adaptation task, we design
a novel semantic-aware loss which aims to prevent the semantic distortion during the
image transformation.

In our unsupervised learning scenario, we establish a nested adversarial learning
module by adding another new discriminator Dm into the system. It distinguishes
between the source domain ground truth lung mask y

s and the predicted lung mask
f

s(x
t!s) obtained by applying the segmenter on the source-like transformed image.

Our underlying hypothesis is that the shape of anatomical structure is consistent across
multi-center medical images. The prediction of f

s(x
t!s) should follow the regular

semantic structures of the lung to fool theDm, otherwise, the generator Gt!s would be
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penalized by the semantic-aware loss:

Lsem(Gt!s,Dm) = Eys[logDm(ys)] + Ext [log(1 �Dm( f
s(Gt!s(x

t))))]. (1.9)

This loss imposes an explicit constraint on the intermediate result of the cyclic trans-
formation. Its gradients can assist the update of the generator Gt!s, which benefits the
stability of the entire adversarial learning procedure.

4.1.3. Learning procedure and implementation details
We follow the practice of [26] to configure the generators and discriminators. Specif-
ically, both generators have the same architecture consisting of an encoder (3 convo-
lutions), a transformer (9 residual blocks) and a decoder (2 deconvolutions and 1 con-
volution). All the three discriminators process 70⇥70 patches and produce real/fake
predictions via 3 stride-2 and 2 stride-1 convolutional layers. The overall objective for
the generators and discriminators is as follows:

L(Gs!t,Gt!s,Ds,Dt,Dm) = LGAN(Gs!t,Dt) + ↵LGAN(Gt!s,Ds) +
�Lcyc(Gt!s,Gs!t) + �Lsem(Gt!s,Dm),

(1.10)

where the {↵, �, �} denote trade-o↵ hyper-parameters adjusting the importance of each
component, which is empirically set to be {0.5, 10, 0.5} in our experiments. The entire
framework is optimized to obtain:

G⇤
s!t
,G⇤

t!s
= arg min

Gs!t

Gt!s

max
Ds,Dt ,Dm

L(Gs!t,Gt!s,Ds,Dt,Dm). (1.11)

The generators {Gt!s,Gs!t} and discriminators {Ds,Dt,Dm} are optimized alto-
gether and updated successively. Note that the segmenter f

s is not updated in the pro-
cess of image transformation. In practice, when training the generative adversarial net-
works, we followed the strategies of [26] for reducing model oscillation. Specifically,
the negative log likelihood in LGAN was replaced by a least-square loss to stabilize the
training. The discriminator loss was calculated using one image from a collection of
fifty previously generated images rather than the one produced in the latest training
step. We used the Adam optimizer with an initial learning rate of 0.002, which was
linearly decayed every 100 epochs. We implemented our proposed framework on the
TensorFlow platform using an Nvidia Titan Xp GPU.

4.2. Experimental results
4.2.1. Datasets and evaluation metrics
Our unsupervised domain adaptation method was validated on lung segmentations
using two public Chest X-ray datasets, i.e., the Montgomery set (138 cases) [43] and
the JSRT set (247 cases) [44]. Both the datasets are typical X-ray scans collected
in clinical practice, but their image distributions are quite di↵erent in terms of the
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Table 1.2 Quantitative evaluation results of pixel-level domain adaptation methods for right/left
lung segmentations from chest X-ray images.

Methods
Right Lung Left Lung

Dice Recall Precision ASD Dice Recall Precision ASD
S-test 95.98 97.98 94.23 2.23 95.23 96.56 94.01 2.45
T-noDA 82.29 98.40 73.38 10.68 76.65 95.06 69.15 11.40
T-HistM [45] 90.05 92.96 88.05 5.72 91.03 94.35 88.45 4.66
T-FeatDA[19] 94.85 93.66 96.42 3.26 92.93 91.67 94.46 3.80
T-STL [7] 96.91 98.47 95.46 1.93 95.84 97.48 94.29 2.20
CyUDA 94.09 96.31 92.28 3.88 91.59 92.28 91.70 4.57
SeUDA (Ours) 95.59 96.55 94.77 2.85 93.42 92.40 94.70 3.51

disease type, intensity, and contrast (see the first and fourth column in Figure 1.6 (a)).
The ground truth masks of left and right lungs are provided in both datasets. We
randomly split each dataset into 7:1:2 for training, validation and test sets. All the
images were resized to 512⇥512, and rescaled to [0, 255]. The prediction masks were
post-processed with the largest connected-component selection and hole filling.

To quantitatively evaluate our method, we utilized four common segmentation
measurements, i.e., the Dice coe�cient ([%]), recall ([%]), precision ([%]) and av-
erage surface distance (ASD)([mm]). The first three metrics are measured based on
the pixel-wise classification accuracy. The ASD assesses the model performance at
boundaries and a lower value indicates better segmentation performance.

4.2.2. Experimental settings
In our experiments, the source domain is the Montgomery set and the target domain
is the JSRT set. We first established the segmenter on source training data indepen-
dently. Next, we test the segmenter under various settings: 1) testing on source domain
(S-test); 2) directly testing on target data (T-noDA); 3) using histogram matching to ad-
just target images before testing (T-HistM); 4) aligning target features with the source
domain as proposed in [19] (T-FeatDA); 5) fine-tuning the model on labeled target
data before testing on JSRT (T-STL); In addition, we investigated the performance of
our proposed domain adaptation method with and w/o the semantic-aware loss, i.e.,
SeUDA and CyUDA.

4.2.3. Results of UDA on cross-cohort chest X-ray images
The comparison results of di↵erent methods are listed in Table 1.2. We can see that
when directly applying the learned source domain segmenter to target data (T-noDA),
the model performance significantly degraded, indicating that domain shift would
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Ground Truth T-noDA SeUDATarget Image CyUDA SeUDA Source Image
(a) (b)

T-HistM

Figure 1.6 Typical results for the image transformation and lung segmentation. (a) Visualiza-
tion of image transformation results, from left to right, are the target images in JSRT set, CyUDA

transformation results, SeUDA transformation results, and the nearest neighbor of x
t!s got from

source set; each row corresponds to one patient. (b) Comparison of segmentation results be-
tween the ground truth, T-noDA, T-HistM, and our proposed SeUDA; each row corresponds to
one patient.

severely impede the generalization performance of DNNs. Specifically, the average
Dice over both lungs dropped from 95.61% to 79.47%, and the average ASD increased
from 2.34 to 11.04 mm.

With our proposed method, we find a remarkable improvement by applying the
source segmenter on transformed target images. Compared with T-noDA, our SeUDA

increased the average Dice by 15.04%. Meanwhile, the ASDs for both lungs were
reduced significantly. Also, our method outperforms the UDA baseline histogram
matching T-HistM with the average dice increased by 3.97% and average ASD de-
creased from 5.19 mm to 3.18 mm. Compared with the feature-level domain adaptation
method T-FeatDA, our SeUDA can not only obtain higher segmentation performance,
but also provide intuitive visualization of how the adaptation is achieved. Notably, the
performance of our unsupervised SeUDA is even comparable to the upper bound of
supervised T-STL. In Table 1.2, the gaps of Dice are marginal, i.e., 1.32% for right
lung and 2.42% for left lung.

The typical transformed target images can be visualized in Figure 1.6 (a), demon-
strating that SeUDA has successfully adapted the appearance of target data to look
similar to source images. In addition, the positions, contents, semantic structures and
clinical clues are well preserved after transformation. In Figure 1.6 (b) we can observe
that without domain adaptation, the predicted lung masks are quite cluttered. With his-
togram matching, appreciable improvements are obtained but the transformed images
cannot mimic the source images very well. With our SeUDA, the lung areas are accu-
rately segmented attributing to the good target-to-source appearance transformation.
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4.2.4. Effectiveness of semantic-aware loss with ablation study
We conduct ablation experiments to investigate the contribution of our novel semantic-
aware loss designed for segmentation domain adaptation. We implemented CyUDA by
removing the semantic-aware loss from the SeUDA. One notorious problem of GANs
is that their training would be unstable and sensitive to initialization states [30, 46].
In this study, we measured the standard deviation (std) of the CyUDA and SeUDA

by running each model for 10 times under di↵erent initializations but with the same
hyper-parameters. We observed significant lower variability on the segmentation per-
formance across the 10 SeUDA models than the 10 CyUDA models, i.e., Dice std:
0.25% v.s. 2.03%, ASD std: 0.16 v.s. 1.19 mm. Qualitatively, we observe that the
CyUDA transformed images may su↵er from distorted lung boundaries in some cases,
see the third row in Figure 1.6 (a). In contrast, adding the semantic-aware loss, the
transformed images consistently present a high quality. This reveals that the novel
semantic-aware loss contributes to stabilize the image transformation process and pre-
vent the distortion in structural contents, and hence contributes to boost the perfor-
mance of segmentation domain adaptation.

5. Discussion
This chapter introduces how to tackle domain adaptation problem in medical imaging
from two di↵erent perspectives. This is an essential and urgent topic to study the gen-
eralization capability and robustness of ConvNets, given that deep learning nowadays
has become the state-of-the-art for solving image recognition tasks. Resolving this is-
sue will help to promote deep learning studies based on large-scale real-world clinical
dataset composing inhomogeneous images [47].

Fine-tuning the ConvNets with a set of new labelled images from the target domain
can improve the model’s performance on target data. However, this straight-forward
supervised solution still requires extra e↵orts from clinicians for constructing the an-
notated fine-tune dataset. Unsupervised domain adaptation methods are more appeal-
ing and practical in the long-run, though it is technically challenging at current stage.
Basically, the UDA requires to model and map the underlying distributions of di↵erent
domains, either in latent feature space or appearance pixel space. The insights of ad-
versarial networks fit well into this scope, as which can implicitly learn how to model,
transform, and discriminate the data distributions via highly non-linear networks. This
forms the basis of the situation that adversarial learning has been frequently investi-
gated for unsupervised domain adaptation tasks.

Feature-level adaptation and pixel-level adaptation are two independent ways to
conduct unsupervised domain adaptation, with ideas from di↵erent perspectives. Fea-
ture level adaptation aims to transform di↵erent data sources into a shared latent space
with domain-invariant features, such that a shared classifier can be established in this
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common space. The advantage is that the classifier is learned in a high-quality homo-
geneous feature space, with reduced confounding factors from scanner e↵ects. The
disadvantage is that the obtained domain-invariant features are unclear for interpre-
tation and intuitive visualization. Pixel level adaptation aims to transform the image
appearance from one domain to the other, and use the transformed images to train or
test a model. The advantage for this stream of solution is that we can directly assess the
quality of domain adaptation by observing the transformed images. The disadvantage
is that there may still exist domain gap between the synthetic images and real images.
It is worth noting that these two independent manners of matching across domains can
be complementary to each other. Jointly taking advantage of both is feasible and have
good potential to present more appealing performance to narrow the domain gap.

6. Conclusion
In conclusion, this chapter presents unsupervised domain adaptation methods for med-
ical image segmentation using adversarial learning. Solutions from two di↵erent per-
spectives are presented, i.e., feature-level adaptation and pixel-level adaptation. The
feature-level adaptation method has been validated on cross-modality (MRI/CT) car-
diac image segmentation. The pixel-level adaptation method has been validated on
cross-cohort X-ray images for lung segmentation. Both application scenarios of unsu-
pervised domain adaptation have demonstrated highly promising results on generaliz-
ing the ConvNets to the unseen target domain. The proposed frameworks are general
and can be extended to other similar scenarios in medical image computing with do-
main shift issues.
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Two public chest X-ray datasets for computer-aided screening of pulmonary diseases, Quantitative
imaging in medicine and surgery 4 (6) (2014) 475.

[44] Junji Shiraishi, Shigehiko Katsuragawa, Junpei Ikezoe, Tsuneo Matsumoto, Takeshi Kobayashi,
Ken-ichi Komatsu, Mitate Matsui, Hiroshi Fujita, Yoshie Kodera, Kunio Doi, Development of a dig-
ital image database for chest radiographs with and without a lung nodule: receiver operating charac-
teristic analysis of radiologists’ detection of pulmonary nodules, American Journal of Roentgenology
174 (1) (2000) 71–74.

[45] Liqun Wang, H-Ming Lai, Gareth J Barker, David H Miller, Paul S Tofts, Correction for variations in
MRI scanner sensitivity in brain studies with histogram matching, Magnetic Resonance in Medicine
39 (2) (1998) 322–327.

[46] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen, Im-
proved techniques for training gans, in: Advances in Neural Information Processing Systems 2016,
pp. 2234–2242.

[47] Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, Ronald M Summers,
Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classifi-
cation and localization of common thorax diseases, in: Computer Vision and Pattern Recognition
(CVPR) 2017, pp. 3462–3471.

View publication statsView publication stats

https://www.researchgate.net/publication/335914018

